Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function.

نویسندگان

  • Michael Richter
  • Michael Kube
  • Dennis A Bazylinski
  • Thierry Lombardot
  • Frank Oliver Glöckner
  • Richard Reinhardt
  • Dirk Schüler
چکیده

Magnetotactic bacteria (MTB) are a heterogeneous group of aquatic prokaryotes with a unique intracellular organelle, the magnetosome, which orients the cell along magnetic field lines. Magnetotaxis is a complex phenotype, which depends on the coordinate synthesis of magnetosomes and the ability to swim and orient along the direction caused by the interaction with the Earth's magnetic field. Although a number of putative magnetotaxis genes were recently identified within a conserved genomic magnetosome island (MAI) of several MTB, their functions have remained mostly unknown, and it was speculated that additional genes located outside the MAI might be involved in magnetosome formation and magnetotaxis. In order to identify genes specifically associated with the magnetotactic phenotype, we conducted comparisons between four sequenced magnetotactic Alphaproteobacteria including the nearly complete genome of Magnetospirillum gryphiswaldense strain MSR-1, the complete genome of Magnetospirillum magneticum strain AMB-1, the complete genome of the magnetic coccus MC-1, and the comparative-ready preliminary genome assembly of Magnetospirillum magnetotacticum strain MS-1 against an in-house database comprising 426 complete bacterial and archaeal genome sequences. A magnetobacterial core genome of about 891 genes was found shared by all four MTB. In addition to a set of approximately 152 genus-specific genes shared by the three Magnetospirillum strains, we identified 28 genes as group specific, i.e., which occur in all four analyzed MTB but exhibit no (MTB-specific genes) or only remote (MTB-related genes) similarity to any genes from nonmagnetotactic organisms and which besides various novel genes include nearly all mam and mms genes previously shown to control magnetosome formation. The MTB-specific and MTB-related genes to a large extent display synteny, partially encode previously unrecognized magnetosome membrane proteins, and are either located within (18 genes) or outside (10 genes) the MAI of M. gryphiswaldense. These genes, which represent less than 1% of the 4,268 open reading frames of the MSR-1 genome, as yet are mostly of unknown functions but are likely to be specifically involved in magnetotaxis and, thus, represent prime targets for future experimental analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle.

Although membrane-bounded compartments are commonly considered a unique eukaryotic characteristic, many species of bacteria have organelles. Compartmentalization is well studied in eukaryotes; however, the molecular factors and processes leading to organelle formation in bacteria are poorly understood. We use the magnetosome compartments of magnetotactic bacteria as a model system to investigat...

متن کامل

Functional Analysis of the Magnetosome Island in Magnetospirillum gryphiswaldense: The mamAB Operon Is Sufficient for Magnetite Biomineralization

Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of larg...

متن کامل

A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria.

In magnetotactic bacteria, a number of specific proteins are associated with the magnetosome membrane (MM) and may have a crucial role in magnetite biomineralization. We have cloned and sequenced the genes of several of these polypeptides in the magnetotactic bacterium Magnetospirillum gryphiswaldense that could be assigned to two different genomic regions. Except for mamA, none of these genes ...

متن کامل

The bacterial magnetosome: a unique prokaryotic organelle.

The bacterial magnetosome is a unique prokaryotic organelle comprising magnetic mineral crystals surrounded by a phospholipid bilayer. These inclusions are biomineralized by the magnetotactic bacteria which are ubiquitous, aquatic, motile microorganisms. Magnetosomes cause cells of magnetotactic bacteria to passively align and swim along the Earth's magnetic field lines, as miniature motile com...

متن کامل

A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 13  شماره 

صفحات  -

تاریخ انتشار 2007